现在的位置:主页 > 期刊导读 >

超临界流体技术制备生物可降解聚合物药物纳米(7)

来源:中国药物经济学 【在线投稿】 栏目:期刊导读 时间:2021-05-03 05:23

【作者】:网站采编

【关键词】:

【摘要】[1] Wang G, Zhou F, Li X, et al. Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery[J]. Ceramics International,2018,44(12):-. [2] Al-Kassas R, Bansal M, Shaw J. N

[1] Wang G, Zhou F, Li X, et al. Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery[J]. Ceramics International,2018,44(12):-.

[2] Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs[J]. Journal of Controlled Release,2017,260(8):202-212.

[3] Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J].Chemical Reviews,2016,116(4):2602-2663.

[4] 施萍,曾贤伍,何文涛,等.肿瘤靶向pH 响应药物递送-成像体系的合成与控制释放研究[J].化学研究,2019,30(2): P, Zeng X W, He W T, et al. Synthesis and controlled release of tumor-targeted pH-responsive drug delivery-imaging system[J].Chemical Research,2019,30(2):182-188.

[5] Bar?m ? B, Bayrak?eken A, Bozba? S E, et al. Control of average particle size of carbon aerogel supported platinum nanoparticles by supercritical deposition[J]. Microporous and Mesoporous Materials,2017,245(6):94-103.

[6] Guamán-Balcázar M C, Montes A, Fernández-Ponce M T, et of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction[J]. Journal of Supercritical Fluids,2018,138(4):92-101.

[7] Sodeifian G, Sajadian A S. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole)using rapid expansion of supercritical solutions with solid cosolvent(RESS-SC)[J].Journal of Supercritical Fluids,2018,133(1):239-252.

[8] Nuchuchua O, Nejadnik M R, Goulooze S C, et of drug delivery particles produced by supercritical carbon dioxide technologies[J]. Journal of Supercritical Fluids,2017,128(10):244-262.

[9] 陈爱政,康永强,王士斌,等.超临界流体技术构建壳聚糖纳米粒/PLLA-PEG-PLLA 复合微粒及其表征[J]. 化工学报, 2015,66(4): A Z, Kang Y Q, Wang S B, et al. Preparation and characterization of chitosan nanoparticles/PLLA-PEG-PLLA composite microparticles by supercritical fluid technology [J].CIESC Journal,2015,66(4):1565-1576.

[10] Esfandiari N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide[J]. Journal of Supercritical Fluids,2015,100(5):129-141.

[11] Lee L Y, Wang C H, Smith K A. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel[J]. Journal of Controlled Release,2008,125(2):96-106.

[12] Lee L Y, Ranganath S H, Fu Y, et al. Paclitaxel release from micro-porous PLGA disks[J]. Chemical Engineering Science,2009,64(21):4341-4349.

[13] Badens E, Masmoudi Y, Mouahid A, et al. Current situation and perspectives in drug formulation by using supercritical fluid technology[J]. Journal of Supercritical Fluids, 2018, 134(4): 274-283.

[14] Gooneh-Farahani S, Naimi-Jamal M R, Naghib S M. Stimuliresponsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review[J]. Expert Opinion on Drug Delivery,2019,16(1):79-99.

[15] Verma D,Gulati N,Kaul S,et based nanostructures for drug delivery[J].Journal of Pharmaceutics,2018,2018:.

[16] Choi S Y,Rhie M N,Kim H T,et engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters[J].Metabolic Engineering,2019,52(19):-.

[17] 王景昌,杨昌盛,万泽韬,等.生物医用脂肪族聚酯开环聚合的研究进展[J].高分子通报,2018,236(12): J C, Yang C S, Wang Z T, et al. Research progress of ringopening polymerization for biomedical aliphatic polyster[J].Polymer Bulletin,2018,236(12):34-39.

[18] Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles[J].Nanoscale,2013,5(8):3103-3111.

[19] Li P, Yang Z, Wang Y, et al. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon[J]. Journal of Microencapsulation, 2015, 32(1):40-45.

[20] Wang Y,Li P,Chen L,et delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles[J].Drug Delivery,2015,22(2):191-198.

[21] Wang K, Nune K C, Misra R D K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules[J]. Acta Biomaterialia,2016,36(5):143-151.

[22] Biswas S, Chattopadhyay M, Sen K K, et al. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice[J].Carbohydrate Polymers,2015,121(5):403-410.

[23] Haq F, Yu H, Wang L, et al. Advances in chemical modifications of starches and their applications[J]. Carbohydrate Polymers,2019,476(4):12-35.

[24] Myint A A, Lee H W, Seo B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J].Green Chemistry,2016,18(7):2129-2146.

[25] 于坤,韩晓东,何丽华,等.用于药物载体系统的多糖材料的修饰方法[J].材料导报,2019,33(3): K, Han X D, He L H, et al. A survey on modification methods of polysaccharides used for drug carrier systems[J]. Materials Reports,2019,33(3):141-147.

文章来源:《中国药物经济学》 网址: http://www.zgywjjx.cn/qikandaodu/2021/0503/821.html

上一篇:高灵敏瑞利光散射法测定药物及人血中美司那
下一篇:共结晶分离技术研究进展